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Abstract—Packet classification is an important topic for high-
speed routers nowadays. There are many packet classification 
algorithms based on decision tree like Hicuts, Hypercuts and 
Hypersplit. Because Hicuts and Hypercuts divides the rule sets 
by cutting the address space into equal-sized subspaces, their 
cutting efficiency is not good. Although Hypersplit proposed a 
good end-point-based cutting scheme, the resulting tree depth is 
still very high. In this paper, we propose a multi-dimensional 
cutting algorithm to significantly reduce the decision tree depth 
and a multi-layered scheme to dramatically reduce the usage of 
memory. Our experimental results show that the proposed 
layered scheme needs much less memory than Hypersplit for 
Firewall and IPC rule tables with a factor of 2 to 106 
improvement while the proposed layered scheme needs a  little 
more memory than Hypersplit for some of ACL tables. In 
addition, in terms of number of memory accesses, the proposed 
layered scheme and Hypercuts are better than Hicuts and 
Hypersplit for all tables while the proposed layered scheme is 
better than Hypercuts for ACL and Firewall tables. In terms of 
number of memory accesses, our layered cutting scheme and 
Hypercuts perform equally well for small rule tables. But, in 
larger rule tables, the proposed layered cutting scheme has better 
performance. 

I. INTRODUCTION  
Packet classification has been studied widely, such as 

firewall, QoS, traffic control, and VPNs. There are numerous 
existing solutions [1, 2, 3, 12, 15, 16] in the literature and many 
of them use decision trees as the basic data structure to make 
the process of classifying packets fast [4, 5, 7, 9, 11, 12, 14]. 
One regulation of the decision trees is the node’s key 
comparison for deciding how to divide and distribute rules 
from an internal node into the child nodes. According to this 
regulation, rules are divided into subgroups each of which is 
put into associated child node and the dividing process is 
continued until the number of rules stored in each leaf node is 
no more than a pre-defined bucket size. When an incoming 
packet enters the classification engine, the decision tree is 
traversed from root, by comparing the headers of the packet 
with the internal node key, to one of its child node. Finally, the 
traversal will reach a leaf and then the rules in the leaf are 
checked for finding matched rule with the highest priority. 

Differentiating where a decision tree based packet 
classification algorithm is good stands on the following factors. 

� Memory Storage: Memory is needed to store internal 
and leaf nodes and the rules in the buckets of the leaf 
nodes. To implement the proposed architecture on 
FPGA, the memory is a key point because the block 
RAM on FPGA is limited. 

� Search speed: Search time includes the time to traverse 
decision tree and the time to sequentially search the 
rule bucket in the leaf nodes. The sequential search 
time of the rules in the leaf nodes depends on the 
bucket size while tree traversal time depends on the 
height of the decision tree. 

Good packet classification algorithms need small memory 
storage and have a high search speed. Hypersplit proposed in 
[11] is good at memory usage. However, because the decision 
tree used by Hypersplit is binary, the height of decision tree is 
too high, making search speed downcast. Our proposed scheme 
solves this problem by using a novel cutting scheme to build a 
multi-way decision tree for reducing tree depth. Although our 
proposed scheme could also reduce memory usage in IPC and 
FW rule tables, we want to improve it further. By observations, 
we find out that rule duplication is a big problem making the 
memory increase explosively. Because the relationship in 
certain internal node’s rule set, some rules may be separated 
inefficiently. To solve this problem, we propose a novel 
layered cutting scheme to build the decision tree by moving 
those duplicated rules to next layer, and we could traverse all 
layered decision trees in parallel.  

The rest of the paper is organized as follows: Section II 
introduces the most related packet classification algorithms that 
are Hicuts, Hypercuts, and Hypersplit. The multi-dimensional 
cutting scheme is proposed in section III. In section IV, the 
layered optimization is proposed. We present our experimental 
results in section V. Finally we conclude our proposed scheme 
and bring up the future work in final section.  

 

II. RELATED  WORK 
Packet classification could be solved in many ways. The 

easiest way is to search the rule table sequentially, and output 
the highest priority rule. Although this solution needs the 
minimal memory size but is very inefficient in query time. 
Therefore many researches improved the query time by 
proposing better data structures. Tree structure is a good 
solution to improve the query time. If the tree has N child 
nodes, traversing the tree only needs a search time of O(logN) 
instead of O(N) by the sequential search. So, tree algorithm is 
the main solution in packet classification. Grid of Trie [10] is a 
fundamental tree based solution for packet classification. It 
improves the hierarchical trie by using switch pointers to avoid 
backtracks and the rule duplications. But, Grid of Trie can not 
be easily extended to more than two fields, making the search 
performance slow. We will introduce the better decision tree 
based algorithms in the following paragraph. 
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Decision tree based packet classification algorithms focus 
on two aspects. The first one is how to select the cut dimension 
and the second is how to decide the cut-point for dividing 
address space into subspaces. There are two major methods to 
pick up the cut dimension: select a single cut dimension one at 
a time [5, 11, 14] or select multiple cut dimensions at a time [6, 
9, 12]. When choosing a single cut dimension, the height of 
decision tree is usually higher than that by choosing more 
dimensions. But the node structure size is smaller because 
choosing multiple dimensions needs to keep more information. 
On the other hand, there are two major methods to separate the 
filters, some algorithms use prefixed as the filter separating 
method and thus create equal-sized subspaces for dividing the 
rule table. In other words, they only need to store the “cut bits” 
in decision tree’s internal nodes instead of the keys (or cut-
point). 

The other method is to divide the rule table by using cutting 
endpoints. Each rule in the filters generates a range (or interval) 
between two endpoints. Only endpoints of ranges are used as 
cut-points. Choosing end-points has more flexibility than 
choosing prefix. Hicuts [5] and Hypercuts [9] both employ 
equal-sized cuts. They use a heuristic to decide how many cuts 
should be employed. The most important difference between 
Hicuts and Hypercuts is that Hicuts only cuts one dimension in 
an internal node but Hypercuts cuts multiple dimensions. 
Therefore, Hypercuts’ tree depth is shorter than Hicuts.  

Hypersplit [11] only cuts a single dimension in an internal 
node, but it employs end-point to find out the cut-point. First, 
for each interval, Hypersplit calculates the number of rules that 
cover the interval and store it in Sr[j] for 1 � j � M, where M is 
the number of end-points. Then it chooses the smallest end-

point m such that 
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, which is called 

heuristic weighted segment balanced strategy. This strategy 
tries to make the sum of covering rules of all the intervals at the 
left side and right side of the end-point m equal. Hypersplit 
only separates subspaces into two parts. Furthermore, 
Hypersplit only picks up one dimension to cut, so the 
Hypersplit decision tree is a binary tree. 

In this paper, we propose a packet classification algorithm 
that picks up multiple dimensions and cutting with end-point to 
make the height of decision tree much shorter. Then we 
propose a layered mechanism to reduce the memory 
consumption dramatically. 

 

III. PROPOSED ALGORITHM 
Our proposed algorithm focuses on two aspects. The first 

aspect is to pick up the dimensions and the second aspect is to 
decide the cut-point. We propose  some heuristics for picking 
up dimensions and deciding cut- point. 

Rule Field-X Field-Y 

R1 [00,00] [00,00] 

R2 [00,00] [00,11] 

R3 [01,01] [00,11] 

R4 [10,11] [11,11] 

R5 [10,11] [00,11] 
R1
R2 

R4
R5 

R2 R3 R5

R2 

R2 

R3 

R3 

R3 
R4
R5 

R5

R5R5

R5R5

Figure 1. (a) Hicuts for the example rules. Need 6 internal node and 7 leaf, average tree height = 3.67 (b) Hypercuts for the 
example rules. Need 4 internal node and 9 leaf, average tree height = 2.89 (c) Hypersplit for the example rules. Need 4 internal 
node and 5 leaf, average tree height = 3.4 (d) Our algorithm for the example rules. Need 4 internal node and 7 leaf, average tree 
height = 2.86 

(a) (b) 

(c) (d) 

x, 1 cut
y, 1 cut

R1 R2 R2 R3

x, 1 cut 

R2 R2 

R5 y, 1 cut

R5 R4

x, 1 cut 
y, 1 cut 

y, 1 cut 

R1 R2 

y, 1 cut 

R2 

x, 1 cut 

R3 

y, 1 cut 

R5 y, 1 cut 

R5 R4 

x, 1 cut

R1 

y, 01 

R2 

x, 01 

R3 

y, 11 

R5 R4 

x, 10
x<10 x�10 

x<01 

y<01 y�01 

x�01 y<11 y�11 x, 01 R5 

x, 10 
y, 01 

R1 R3

y, 11x, 01 

R2 R3 R5 R4

x<10
y<01

x�10
yy�01

x<10 
y�01 

x�10 
y<01 

x<01 x�01 x<01 x�01 y<11 y�11

Table 1. An example of a 2-D rule set.
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A. Select the cut dimensions: 
1) Heuristic 1: Distinct field values. We consider the set of 

dimensions with larger number of distinct field values. For the 
example in table 1, the distinct field values in field-x are 3. R4 
and R5 also have the same field-x value. ‘Larger’ dimension 
means the number of distinct field values for this dimension is 
greater than the mean number of distinct field values of all 
dimensions. For example if the five dimension’s distinct field 
values of rules are 45, 15, 35, 10, 3 with mean 22, then we 
should choose dimensions first and third. 

2) Heuristic 2: Average covering rules of all intervals. 
According to Hypersplit, the average number of covering rules 
of all intervals is calculated for each dimension. The dimension 
which has minimal average value is selected by Hypersplit. In 
our method, we choose those dimensions whose values are 
smaller than the average value of all dimensions.   

3) Heuristic 3: The number of end-points.  We choose 
those dimensions whose number of end-points is greater than 
average number of endpoints of all dimensions. 

B. Space decomposition: 
1) Heuristic 1 : Weighted segment-balanced. This is the 

heuristic weighted segment balanced strategy proposed by 
Hypersplit described above. 

2) Heuristic 2 : 1/2 end-point. The cut-point m is selected 
such that the number of intervals at m’s left side is equal to that 
of m’s right side. That is, we choose the 1/2(lowbound end-
point + upbound end-point) as the cut-point. 

By combining three heuristics for selecting dimensions and 
two heuristics for selecting cut-point, there are six possibilities 
to divide the address space into subspaces. In our experimental 
results, for selecting the cut dimension, we choose distinct field 
values heuristic, and for select cut-point we choose weighted 
segment-balanced heuristic to obtain the best results of 
memory consumption and number of memory accesses. 

Table 1 is a 2-D rule table. There are 5 rules and R1’s 
priority is highest. Figure 1 (a), (b), (c), and (d) show the 
decision trees built by Hicuts, Hypercuts, Hypersplit and the 
proposed algorithm with the bucket size of 1.  

In Figure 1(a), Hicuts employs the equal-sized subspace 
partition, and chooses only one dimension to cut for every 
internal node. Because only one dimension is selected at a time, 
the tree height of final decision tree is highest among all the 
schemes. Higher tree generates more internal nodes, and the 
memory storage become large. 

In Figure 1(b), Hypercuts also employs the equal-sized 
subspace partition, but it chooses multiple dimensions at each 
internal node. So, the height of decision tree decreases 
dramatically. But, there is a critical drawback that some rules 
are duplicated many times. For example, R2 exists in 4 leaf 
nodes. It wastes lots of memory to store those duplicated rules. 

In Figure 1(c), Hypersplit chooses cut-points. At the first 
level, the rules in each of three intervals at field-x are 2, 1, and 
2 So, value 10 is used as the cut-point which divides the rule 
table into two groups, {R1, R2, R3} and {R4, R5}. At level 2, 
left internal node’s rules in each of two intervals at field-x are 3 
and 1. So, selecting 01 as cut-point can divide rules into {R1, 
R2} and {R3}. The right internal node’s rules in each of three 
intervals at field-y are 1, 1, ad 2. So, choosing 11 as cut-point 
can divide rules into {R4} and {R5}. By this rules it could 
completes the decision tree. This cut-point selection algorithm 
of Hypersplit reduces the rule duplications effectively. 

Figure 1(d) shows the resulting decision tree of our 
proposed algorithm. We combine the advantages from 
choosing multiple dimensions and an effective cut-point 
method. We can find out that cutting with end-point are more 
efficient (the duplicated rules are less), and the tree depth is 
effected by choosing only one dimension or multiple 
dimensions. So our algorithm could makes memory storage 

Figure 2.  An example for rules distribution. 

 
 

Z 

Y X 

(a) 

Node 1 
R1,R2,R3,R4,R5,R6 

R1,R2,R3 

R1,R2 R1,R3 

R1 R2 R1 R3 

7 

2 5

6 

R1,R4 

R1 R4 

R1,R4,R5 

R1,R4 R4,R5 

R1 R4 R4 R5 

9 

4 

8 

R5,R6

R5 R6

3 

Node 1 
R1,R2,R3,R4,R5,R6 

R2,R3 
2 5

R1,R4 

R1 R4 

4 
R5,R6

R5 R6

3 
R1,R5 

R1 R5 

R1 R4 

R2 R3 

(b) 

Layer 2

R1,R4

R1 R4

R1 
R4 

Duplicated 
rule table Node 1 

R1,R2,R3,R4,R5,R6 

R2,R3 
2 3 

R4 R5,R6 

R5 R6 R2 R3 

R5 

(c) 

Figure 3.  Pushing up heuristic and our optimization 
for rule duplication. 

Layer 1 

 acl1
1K

acl1
5K

acl1
10K

ipc1 
1K 

ipc1 
5K 

ipc1 
10K 

fw1
1K

fw1
5K

fw1
10K

# of 
rules 916 4415 9603 938 4460 9037 791 4653 9311

Table 2. The information of rule tables.
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smaller and decreases the height of decision tree. Although our 
duplicated rules are more than Hypersplit, but we propose 
another improved architecture that can make the tree height 
lower and decrease the memory storage dramatically. 

 

IV. OPTIMIZATION 
Rule duplication is a very serious problem in packet 

classification. It will cause a rule replicated many times and use 
a lot of memory to keep them. Due to rules distribution and 
cover property, we can not avoid this problem, and all we can 
do is to decrease this probability. Figure 2 shows an example. 
Rule X and rule Y are disjoint and rule Z covers rule X and 
rule Y. If we want to partition these three rules, no matter how 
the cutting operation is performed, the rule Z always needs to 
be replicated. 

Figure 3(a) shows rule duplications in a decision tree. R1 
exists in node 6 and node 7 and as a result, both the left child of 
node 6 and node 7 need to store R1. In the same way, R4 exists 
in node 8 and node 9, and both the right child of node 8 and left 
child node of 9 need to store the R4. This situation causes a lot 
of redundant rules. So, we must keep cutting the tree until the 

number of rules in the node is less than the bucket size. Rule 
duplication not only increases the memory storage but also 
increases the tree depth. 

Hypercuts proposes a solution to tackle this problem, 
named “Pushing Common Rule Subsets Upwards”. If all 
children have the same rules, then the parent node will create a 
rule list (i.e., bucket) to store this rules instead of duplicating 
them in its children. Figure 3(b) shows the solution by 
Hypercuts. R1 is stored in the rule list of node 2 and R4 is 
stored in the rule list of node 4. When traversing to node 2 and 
node 4, the rules lists belonging the internal nodes must also be 
searched. 

Our algorithm tackles those duplicated rules by removing 
those duplicated rules, and uses them to create a duplicated rule 
table.  Figure 3(c) shows how we decrease the tree depth and 
the number of node. In our algorithm, during constructing our 
decision tree, if we find a rule could be moved out, then when 
we traverse to another node which has the same rule, this rule 
should be eliminated. That ensures the rule not existing in this 
decision tree and eliminates the replication condition 
effectively.  Then, according to our above heuristic, another 
decision tree is constructed from the duplicated rule table. 
When during search, all the decision trees have to be searched. 
Because we could implement the search on FPGA, we can 
traverse all the layered trees in parallel without increasing the 
search time.  

Of course, pushing common rules subsets upwards also 
could be implemented on hardware and search the rules in 
internal nodes in parallel. But notice that, partial redundancy 
can’t be pushed up which causes the rule still being duplicated 
many times. In Figure 3(a), nodes 2, 3, 4 have the same rule R1, 
but the node 5 doesn’t have it. So, R1 can not be pushed up to 
node 1. Although R1 can be pulled up to node 2, but node 3 
and node 4 also need to keep R1 in their child nodes. The 
pushing up heuristic can be regarded as local operation that the 
different sub-trees pushing operation is independent. So rule 
duplication condition still exists. Our experimental comparison 

ACL1 IPC1 FW1  1K 5K 10K 1K 5K 10K 1K 5K 10K 
Memory(KB) 17.95 102.79 149.72 15.43 133.47 367.95 27.95 276.70 594.08 

Avg height 6.01 7.68 10.15 6.48 8.19 9.28 5.97 9.23 10.14 Layer 1 
D-rules 13 197 686 93 800 1218 270 1340 2383 

Memory(KB) 0.06 7.06 14.20 8.18 36.38 57.16 1.73 6.95 13.13 
Avg height 2.00 5.71 6.29 5.74 6.77 7.58 5.52 8.60 9.57 Layer 2 

D-rules 0 0 0 0 315 360 115 190 119 
Memory(KB) - - - - 15.10 24.04 37.58 29.18 15.49 

Avg height - - - - 5.95 6.35 5.77 5.26 4.89 Layer 3 
D-rules - - - - 117 214 0 38 19 

Memory(KB) - - - - 27.13 9.85 - 1.98 0.20 
Avg height - - - - 6.57 5.81 - 4.21 3.00 Layer 4 

D-rules - - - - 0 108 - 0 0 
Memory(KB) - - - - - 29.87 - - - 

Avg height - - - - - 6.56 - - - Layer 5 
D-rules - - - - - 0 - - - 

Total memory (KB) 18.01 109.86 163.92 23.62 212.10 488.89 67.27 312.85 622.71 

Table 3. The detailed performance statistics of the proposed scheme with bucket size = 8. 

IPC1  10K 
Memory(KB) 367.95 

Avg height 9.28 Layer 1 
D-rules 1218 

Memory(KB) 57.16 
Avg height 7.58 Layer 2 

D-rules 360 
Memory(KB) 24.04 

Avg height 6.35 Layer 3 
D-rules 214 

Memory(KB) 210.15 
Avg height 7.27 Layer 4 

D-rules 0 
Total memory (KB) 659.31 

Table 4. Four-layer construction for IPC1 10K table. 
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between pushing up and our layered scheme will be shown in 
section V. 

Our data structure totally needs 112 bits for each internal 
node and leaf node. For internal node, 1 bit is needed to 
identify whether the node is an internal node or a leaf and 5 bits 
are needed to identify which cut dimensions are selected. We 
constrain the dimensions only up to 3 and so we need 80 bits to 
store the three cut-points, e.g., 32 bits, 32 bits, and 16 bits for 
two IP address fields and one port field. Also, we need 26 bits 
to store the address of leaf nodes. Because we can locate the 
sibling nodes to continuous address, so we only store the 
address for first child node and accesses the others by offset. 
For leaf nodes, the largest rule table we test is 10K, so we need 
14 bits to discriminate rules, and the bucket size is 8, so we all 
need 14*8=112 bits for each leaf. 

 

V. EXPERIMENTAL RESULTS 

A. Data set  
We use Access Control List (ACL), Firewall rules (FW) 

and IP Chains (IPC) with 1k, 5k and 10k, generated by the 
Classbench [8]. Table 2 is the number of rules for each rule 

table. And the bucket size for all leaf nodes is set to 8. The data 
structure of Hypersplit contains 64 bits (8 Byte). 

B. Memory size and accesses 
In Table 3, we present the memory size, average height of 

the decision tree and the number of duplicated rules in every 
decision tree. The number of trees is a trade-off between 
memory size and hardware cost. If we create more layers, then 
the total memory storage size would be smaller, but we need 
more hardware to implement search engines. Furthermore, 
according to the complexity and table size of rule table, the 
more complex is the rule table, the more parallel decision trees 
are needed. If we don’t create more layers, the memory size 
would become much larger. For ACL1 and IPC_1k, two 
decision trees are enough to reduce the memory size 
significantly. But in IPC and FW, we need create more layers 
to reduce the total memory. Layer 1 is created by original rule 
table. When this tree is accomplished, i the duplicated rule 
table will be generated where the D-rule rows in Table 3 
indicate the size of duplicated rule table. By using the 
duplicated rule table, we can create the decision tree of the next 
layer. All trees except the last one are implemented by using 
our proposed improvement heuristic. So, the last tree may need 
more memories and the tree depth is higher. Table 4 shows that 
in IPC1 10K rule table when only 4 layers are used. Although 
layer 4 only contains 214 rules, a total of 210.15 KB is needed. 
In the proposed layered cutting scheme, the duplicated rule 
table behind layer 2 is very small (not great than 360), but the 
rules in the duplicated rule set effect each other mutually and 
cause a serious duplication problem. Besides, in FW1 5k and 
10K, the memory usage in tree 3 is lager than tree 2. The 
reason is that the rules moved from tree 2 to tree 3 may be 
heavily overlapped and thus, the rules remained in tree 2 are 
almost independent. As a result, the tree 2’s memory becomes 
very small.  

In Figure 4, we compare the memory consumptions for 
Hicuts, Hypercuts, Hypersplit, our proposed scheme without 
optimization, our proposed scheme with push-up and our 
layered cutting scheme. Hicuts and Hypersplit performance are 
according to the Hypersplit paper. Hicuts has the worst 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

A CL1-1K A CL1-5K A CL1-10K IPC1-1K IPC1-5K IPC1-10K FW 1-1K FW 1-5K FW 1-10K

Hicuts Hypercuts
Hypersplit P roposed scheme
P roposed scheme with push-up Multiple layered cutting scheme

Figure 4. The memory usage (KB) comparison of Hicuts, Hypercuts, Hypersplit, proposed scheme (without optimization), 
proposed scheme with push-up and Multiple layered cutting scheme. 

ACL1 IPC1 FW1 
 

1K 5K 10K 1K 5K 10K 1K 5K 10K

Hypersplit (KB) 15 130 150 55 6000 20000 200 15000 66000

Multiple layered 
cutting scheme 

(KB) 
18 109 163 23 212 488 67 312 622

Reduction 0.83 1.18 0.91 2.32 28.28 40.90 2.97 47.94 105.98

Table 5. Multiple layered cutting scheme memory 
reduction over Hypersplit. 
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memory usage no matter which rule table is used due to its 
inefficient equal-sized and single dimension cutting. Hypercuts 
memory usage is better than Hicuts because the multiple 
dimensions are used for cutting. Our proposed scheme without 
optimization memory usage is larger than Hypersplit in small 
table or not complex rule table. But in bigger or more complex 
rule table such as IPC and FW tables of 5K and 10K rules, our 
proposed scheme is more efficient in dividing address space 
into subspaces. We also compare the optimizations between 
Push-up heuristic and our proposed layered cutting scheme. 
We could find out that our layered cutting scheme tackling rule 
duplication problem is much better than Push-up scheme 
significantly. Table 5 shows the comparison between our 
layered cutting scheme and Hypersplit as well as the factors by 
which our layered cutting scheme reduces Hypersplit’s 
memory usage. In FW1 10K rule table, the reduction even gets 
up to 106 times, where memory reduction of the proposed 
scheme over Hypersplit is defined to be the ratio of the 
memories needed by Hypersplit and the proposed scheme. 

In Figure 5, we compare the average numbers of memory 
accesses for Hicuts, Hypercuts, Hypersplit, our proposed 
scheme without optimization, our proposed scheme with push-
up and our layered cutting scheme where the memory accesses 
for the sequential search in the leaf node are excluded. Hicuts 
and Hypersplit have larger numbers of memory accesses than 
Hypercuts and the proposed layered cutting scheme because 

they choose only single dimension to cut. Our layered cutting 
scheme and Hypercuts perform equally well for small rule 
tables. But, in larger rule tables, the proposed layered cutting 
scheme has better performance. In Table 6, we show the details 
between the one without optimization and the ones with 
optimizations. We can find out that optimization scheme not 
only improves the memory usage, but also the decision tree 
depth. We know that if the internal node’s rule set size is great 
than the bucket size, this internal node can’t convert to leaf 
node. Because our layered cutting scheme is able to reduce the 
duplicated rules, the rule set belonging to each internal node 
has more chance to convert to leaf node. So the height of 
decision tree becomes lower.  

 

VI. CONCLUSION  
We propose an efficient packet classification algorithm to 

reduce memory storage size and number of memory accesses. 
Many algorithms have good performance in small or not 
complex rule table, but in larger or complex rule table, their 
performance drops dramatically (or memory usage grows up 
irrationally). Our proposed algorithm could limit the memory 
growth efficiently. In other words, the performance 
improvement of the proposed schemes is not effected by the 
characteristics of rule tables. Our future work will be the FPGA 
implementation of the proposed scheme using pipelined 
architecture to increase the overall throughput. 
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