
Layered Cutting Scheme for Packet Classification
Yeim-Kuan Chang and Han-Chen Chen

Department of Computer Science and Information Engineering
National Cheng Kung University, Tainan, 701, Taiwan

{ykchang, p76981285}@mail.ncku.edu.tw

Abstract—Packet classification is an important topic for high-
speed routers nowadays. There are many packet classification
algorithms based on decision tree like Hicuts, Hypercuts and
Hypersplit. Because Hicuts and Hypercuts divides the rule sets
by cutting the address space into equal-sized subspaces, their
cutting efficiency is not good. Although Hypersplit proposed a
good end-point-based cutting scheme, the resulting tree depth is
still very high. In this paper, we propose a multi-dimensional
cutting algorithm to significantly reduce the decision tree depth
and a multi-layered scheme to dramatically reduce the usage of
memory. Our experimental results show that the proposed
layered scheme needs much less memory than Hypersplit for
Firewall and IPC rule tables with a factor of 2 to 106
improvement while the proposed layered scheme needs a little
more memory than Hypersplit for some of ACL tables. In
addition, in terms of number of memory accesses, the proposed
layered scheme and Hypercuts are better than Hicuts and
Hypersplit for all tables while the proposed layered scheme is
better than Hypercuts for ACL and Firewall tables. In terms of
number of memory accesses, our layered cutting scheme and
Hypercuts perform equally well for small rule tables. But, in
larger rule tables, the proposed layered cutting scheme has better
performance.

I. INTRODUCTION
Packet classification has been studied widely, such as

firewall, QoS, traffic control, and VPNs. There are numerous
existing solutions [1, 2, 3, 12, 15, 16] in the literature and many
of them use decision trees as the basic data structure to make
the process of classifying packets fast [4, 5, 7, 9, 11, 12, 14].
One regulation of the decision trees is the node’s key
comparison for deciding how to divide and distribute rules
from an internal node into the child nodes. According to this
regulation, rules are divided into subgroups each of which is
put into associated child node and the dividing process is
continued until the number of rules stored in each leaf node is
no more than a pre-defined bucket size. When an incoming
packet enters the classification engine, the decision tree is
traversed from root, by comparing the headers of the packet
with the internal node key, to one of its child node. Finally, the
traversal will reach a leaf and then the rules in the leaf are
checked for finding matched rule with the highest priority.

Differentiating where a decision tree based packet
classification algorithm is good stands on the following factors.

� Memory Storage: Memory is needed to store internal
and leaf nodes and the rules in the buckets of the leaf
nodes. To implement the proposed architecture on
FPGA, the memory is a key point because the block
RAM on FPGA is limited.

� Search speed: Search time includes the time to traverse
decision tree and the time to sequentially search the
rule bucket in the leaf nodes. The sequential search
time of the rules in the leaf nodes depends on the
bucket size while tree traversal time depends on the
height of the decision tree.

Good packet classification algorithms need small memory
storage and have a high search speed. Hypersplit proposed in
[11] is good at memory usage. However, because the decision
tree used by Hypersplit is binary, the height of decision tree is
too high, making search speed downcast. Our proposed scheme
solves this problem by using a novel cutting scheme to build a
multi-way decision tree for reducing tree depth. Although our
proposed scheme could also reduce memory usage in IPC and
FW rule tables, we want to improve it further. By observations,
we find out that rule duplication is a big problem making the
memory increase explosively. Because the relationship in
certain internal node’s rule set, some rules may be separated
inefficiently. To solve this problem, we propose a novel
layered cutting scheme to build the decision tree by moving
those duplicated rules to next layer, and we could traverse all
layered decision trees in parallel.

The rest of the paper is organized as follows: Section II
introduces the most related packet classification algorithms that
are Hicuts, Hypercuts, and Hypersplit. The multi-dimensional
cutting scheme is proposed in section III. In section IV, the
layered optimization is proposed. We present our experimental
results in section V. Finally we conclude our proposed scheme
and bring up the future work in final section.

II. RELATED WORK
Packet classification could be solved in many ways. The

easiest way is to search the rule table sequentially, and output
the highest priority rule. Although this solution needs the
minimal memory size but is very inefficient in query time.
Therefore many researches improved the query time by
proposing better data structures. Tree structure is a good
solution to improve the query time. If the tree has N child
nodes, traversing the tree only needs a search time of O(logN)
instead of O(N) by the sequential search. So, tree algorithm is
the main solution in packet classification. Grid of Trie [10] is a
fundamental tree based solution for packet classification. It
improves the hierarchical trie by using switch pointers to avoid
backtracks and the rule duplications. But, Grid of Trie can not
be easily extended to more than two fields, making the search
performance slow. We will introduce the better decision tree
based algorithms in the following paragraph.

2011 International Conference on Advanced Information Networking and Applications

1550-445X/11 $26.00 © 2011 IEEE

DOI 10.1109/AINA.2011.70

675

Decision tree based packet classification algorithms focus
on two aspects. The first one is how to select the cut dimension
and the second is how to decide the cut-point for dividing
address space into subspaces. There are two major methods to
pick up the cut dimension: select a single cut dimension one at
a time [5, 11, 14] or select multiple cut dimensions at a time [6,
9, 12]. When choosing a single cut dimension, the height of
decision tree is usually higher than that by choosing more
dimensions. But the node structure size is smaller because
choosing multiple dimensions needs to keep more information.
On the other hand, there are two major methods to separate the
filters, some algorithms use prefixed as the filter separating
method and thus create equal-sized subspaces for dividing the
rule table. In other words, they only need to store the “cut bits”
in decision tree’s internal nodes instead of the keys (or cut-
point).

The other method is to divide the rule table by using cutting
endpoints. Each rule in the filters generates a range (or interval)
between two endpoints. Only endpoints of ranges are used as
cut-points. Choosing end-points has more flexibility than
choosing prefix. Hicuts [5] and Hypercuts [9] both employ
equal-sized cuts. They use a heuristic to decide how many cuts
should be employed. The most important difference between
Hicuts and Hypercuts is that Hicuts only cuts one dimension in
an internal node but Hypercuts cuts multiple dimensions.
Therefore, Hypercuts’ tree depth is shorter than Hicuts.

Hypersplit [11] only cuts a single dimension in an internal
node, but it employs end-point to find out the cut-point. First,
for each interval, Hypersplit calculates the number of rules that
cover the interval and store it in Sr[j] for 1 � j � M, where M is
the number of end-points. Then it chooses the smallest end-

point m such that
][

12
1][

1
jSr

j
M

jSr
j
m

�� �
�

�

, which is called

heuristic weighted segment balanced strategy. This strategy
tries to make the sum of covering rules of all the intervals at the
left side and right side of the end-point m equal. Hypersplit
only separates subspaces into two parts. Furthermore,
Hypersplit only picks up one dimension to cut, so the
Hypersplit decision tree is a binary tree.

In this paper, we propose a packet classification algorithm
that picks up multiple dimensions and cutting with end-point to
make the height of decision tree much shorter. Then we
propose a layered mechanism to reduce the memory
consumption dramatically.

III. PROPOSED ALGORITHM
Our proposed algorithm focuses on two aspects. The first

aspect is to pick up the dimensions and the second aspect is to
decide the cut-point. We propose some heuristics for picking
up dimensions and deciding cut- point.

Rule Field-X Field-Y

R1 [00,00] [00,00]

R2 [00,00] [00,11]

R3 [01,01] [00,11]

R4 [10,11] [11,11]

R5 [10,11] [00,11]
R1
R2

R4
R5

R2 R3 R5

R2

R2

R3

R3

R3
R4
R5

R5

R5R5

R5R5

Figure 1. (a) Hicuts for the example rules. Need 6 internal node and 7 leaf, average tree height = 3.67 (b) Hypercuts for the
example rules. Need 4 internal node and 9 leaf, average tree height = 2.89 (c) Hypersplit for the example rules. Need 4 internal
node and 5 leaf, average tree height = 3.4 (d) Our algorithm for the example rules. Need 4 internal node and 7 leaf, average tree
height = 2.86

(a) (b)

(c) (d)

x, 1 cut
y, 1 cut

R1 R2 R2 R3

x, 1 cut

R2 R2

R5 y, 1 cut

R5 R4

x, 1 cut
y, 1 cut

y, 1 cut

R1 R2

y, 1 cut

R2

x, 1 cut

R3

y, 1 cut

R5 y, 1 cut

R5 R4

x, 1 cut

R1

y, 01

R2

x, 01

R3

y, 11

R5 R4

x, 10
x<10 x�10

x<01

y<01 y�01

x�01 y<11 y�11 x, 01 R5

x, 10
y, 01

R1 R3

y, 11x, 01

R2 R3 R5 R4

x<10
y<01

x�10
yy�01

x<10
y�01

x�10
y<01

x<01 x�01 x<01 x�01 y<11 y�11

Table 1. An example of a 2-D rule set.

676

A. Select the cut dimensions:
1) Heuristic 1: Distinct field values. We consider the set of

dimensions with larger number of distinct field values. For the
example in table 1, the distinct field values in field-x are 3. R4
and R5 also have the same field-x value. ‘Larger’ dimension
means the number of distinct field values for this dimension is
greater than the mean number of distinct field values of all
dimensions. For example if the five dimension’s distinct field
values of rules are 45, 15, 35, 10, 3 with mean 22, then we
should choose dimensions first and third.

2) Heuristic 2: Average covering rules of all intervals.
According to Hypersplit, the average number of covering rules
of all intervals is calculated for each dimension. The dimension
which has minimal average value is selected by Hypersplit. In
our method, we choose those dimensions whose values are
smaller than the average value of all dimensions.

3) Heuristic 3: The number of end-points. We choose
those dimensions whose number of end-points is greater than
average number of endpoints of all dimensions.

B. Space decomposition:
1) Heuristic 1 : Weighted segment-balanced. This is the

heuristic weighted segment balanced strategy proposed by
Hypersplit described above.

2) Heuristic 2 : 1/2 end-point. The cut-point m is selected
such that the number of intervals at m’s left side is equal to that
of m’s right side. That is, we choose the 1/2(lowbound end-
point + upbound end-point) as the cut-point.

By combining three heuristics for selecting dimensions and
two heuristics for selecting cut-point, there are six possibilities
to divide the address space into subspaces. In our experimental
results, for selecting the cut dimension, we choose distinct field
values heuristic, and for select cut-point we choose weighted
segment-balanced heuristic to obtain the best results of
memory consumption and number of memory accesses.

Table 1 is a 2-D rule table. There are 5 rules and R1’s
priority is highest. Figure 1 (a), (b), (c), and (d) show the
decision trees built by Hicuts, Hypercuts, Hypersplit and the
proposed algorithm with the bucket size of 1.

In Figure 1(a), Hicuts employs the equal-sized subspace
partition, and chooses only one dimension to cut for every
internal node. Because only one dimension is selected at a time,
the tree height of final decision tree is highest among all the
schemes. Higher tree generates more internal nodes, and the
memory storage become large.

In Figure 1(b), Hypercuts also employs the equal-sized
subspace partition, but it chooses multiple dimensions at each
internal node. So, the height of decision tree decreases
dramatically. But, there is a critical drawback that some rules
are duplicated many times. For example, R2 exists in 4 leaf
nodes. It wastes lots of memory to store those duplicated rules.

In Figure 1(c), Hypersplit chooses cut-points. At the first
level, the rules in each of three intervals at field-x are 2, 1, and
2 So, value 10 is used as the cut-point which divides the rule
table into two groups, {R1, R2, R3} and {R4, R5}. At level 2,
left internal node’s rules in each of two intervals at field-x are 3
and 1. So, selecting 01 as cut-point can divide rules into {R1,
R2} and {R3}. The right internal node’s rules in each of three
intervals at field-y are 1, 1, ad 2. So, choosing 11 as cut-point
can divide rules into {R4} and {R5}. By this rules it could
completes the decision tree. This cut-point selection algorithm
of Hypersplit reduces the rule duplications effectively.

Figure 1(d) shows the resulting decision tree of our
proposed algorithm. We combine the advantages from
choosing multiple dimensions and an effective cut-point
method. We can find out that cutting with end-point are more
efficient (the duplicated rules are less), and the tree depth is
effected by choosing only one dimension or multiple
dimensions. So our algorithm could makes memory storage

Figure 2. An example for rules distribution.

Z

Y X

(a)

Node 1
R1,R2,R3,R4,R5,R6

R1,R2,R3

R1,R2 R1,R3

R1 R2 R1 R3

7

2 5

6

R1,R4

R1 R4

R1,R4,R5

R1,R4 R4,R5

R1 R4 R4 R5

9

4

8

R5,R6

R5 R6

3

Node 1
R1,R2,R3,R4,R5,R6

R2,R3
2 5

R1,R4

R1 R4

4
R5,R6

R5 R6

3
R1,R5

R1 R5

R1 R4

R2 R3

(b)

Layer 2

R1,R4

R1 R4

R1
R4

Duplicated
rule table Node 1

R1,R2,R3,R4,R5,R6

R2,R3
2 3

R4 R5,R6

R5 R6 R2 R3

R5

(c)

Figure 3. Pushing up heuristic and our optimization
for rule duplication.

Layer 1

 acl1
1K

acl1
5K

acl1
10K

ipc1
1K

ipc1
5K

ipc1
10K

fw1
1K

fw1
5K

fw1
10K

of
rules 916 4415 9603 938 4460 9037 791 4653 9311

Table 2. The information of rule tables.

677

smaller and decreases the height of decision tree. Although our
duplicated rules are more than Hypersplit, but we propose
another improved architecture that can make the tree height
lower and decrease the memory storage dramatically.

IV. OPTIMIZATION
Rule duplication is a very serious problem in packet

classification. It will cause a rule replicated many times and use
a lot of memory to keep them. Due to rules distribution and
cover property, we can not avoid this problem, and all we can
do is to decrease this probability. Figure 2 shows an example.
Rule X and rule Y are disjoint and rule Z covers rule X and
rule Y. If we want to partition these three rules, no matter how
the cutting operation is performed, the rule Z always needs to
be replicated.

Figure 3(a) shows rule duplications in a decision tree. R1
exists in node 6 and node 7 and as a result, both the left child of
node 6 and node 7 need to store R1. In the same way, R4 exists
in node 8 and node 9, and both the right child of node 8 and left
child node of 9 need to store the R4. This situation causes a lot
of redundant rules. So, we must keep cutting the tree until the

number of rules in the node is less than the bucket size. Rule
duplication not only increases the memory storage but also
increases the tree depth.

Hypercuts proposes a solution to tackle this problem,
named “Pushing Common Rule Subsets Upwards”. If all
children have the same rules, then the parent node will create a
rule list (i.e., bucket) to store this rules instead of duplicating
them in its children. Figure 3(b) shows the solution by
Hypercuts. R1 is stored in the rule list of node 2 and R4 is
stored in the rule list of node 4. When traversing to node 2 and
node 4, the rules lists belonging the internal nodes must also be
searched.

Our algorithm tackles those duplicated rules by removing
those duplicated rules, and uses them to create a duplicated rule
table. Figure 3(c) shows how we decrease the tree depth and
the number of node. In our algorithm, during constructing our
decision tree, if we find a rule could be moved out, then when
we traverse to another node which has the same rule, this rule
should be eliminated. That ensures the rule not existing in this
decision tree and eliminates the replication condition
effectively. Then, according to our above heuristic, another
decision tree is constructed from the duplicated rule table.
When during search, all the decision trees have to be searched.
Because we could implement the search on FPGA, we can
traverse all the layered trees in parallel without increasing the
search time.

Of course, pushing common rules subsets upwards also
could be implemented on hardware and search the rules in
internal nodes in parallel. But notice that, partial redundancy
can’t be pushed up which causes the rule still being duplicated
many times. In Figure 3(a), nodes 2, 3, 4 have the same rule R1,
but the node 5 doesn’t have it. So, R1 can not be pushed up to
node 1. Although R1 can be pulled up to node 2, but node 3
and node 4 also need to keep R1 in their child nodes. The
pushing up heuristic can be regarded as local operation that the
different sub-trees pushing operation is independent. So rule
duplication condition still exists. Our experimental comparison

ACL1 IPC1 FW1 1K 5K 10K 1K 5K 10K 1K 5K 10K
Memory(KB) 17.95 102.79 149.72 15.43 133.47 367.95 27.95 276.70 594.08

Avg height 6.01 7.68 10.15 6.48 8.19 9.28 5.97 9.23 10.14 Layer 1
D-rules 13 197 686 93 800 1218 270 1340 2383

Memory(KB) 0.06 7.06 14.20 8.18 36.38 57.16 1.73 6.95 13.13
Avg height 2.00 5.71 6.29 5.74 6.77 7.58 5.52 8.60 9.57 Layer 2

D-rules 0 0 0 0 315 360 115 190 119
Memory(KB) - - - - 15.10 24.04 37.58 29.18 15.49

Avg height - - - - 5.95 6.35 5.77 5.26 4.89 Layer 3
D-rules - - - - 117 214 0 38 19

Memory(KB) - - - - 27.13 9.85 - 1.98 0.20
Avg height - - - - 6.57 5.81 - 4.21 3.00 Layer 4

D-rules - - - - 0 108 - 0 0
Memory(KB) - - - - - 29.87 - - -

Avg height - - - - - 6.56 - - - Layer 5
D-rules - - - - - 0 - - -

Total memory (KB) 18.01 109.86 163.92 23.62 212.10 488.89 67.27 312.85 622.71

Table 3. The detailed performance statistics of the proposed scheme with bucket size = 8.

IPC1 10K
Memory(KB) 367.95

Avg height 9.28 Layer 1
D-rules 1218

Memory(KB) 57.16
Avg height 7.58 Layer 2

D-rules 360
Memory(KB) 24.04

Avg height 6.35 Layer 3
D-rules 214

Memory(KB) 210.15
Avg height 7.27 Layer 4

D-rules 0
Total memory (KB) 659.31

Table 4. Four-layer construction for IPC1 10K table.

678

between pushing up and our layered scheme will be shown in
section V.

Our data structure totally needs 112 bits for each internal
node and leaf node. For internal node, 1 bit is needed to
identify whether the node is an internal node or a leaf and 5 bits
are needed to identify which cut dimensions are selected. We
constrain the dimensions only up to 3 and so we need 80 bits to
store the three cut-points, e.g., 32 bits, 32 bits, and 16 bits for
two IP address fields and one port field. Also, we need 26 bits
to store the address of leaf nodes. Because we can locate the
sibling nodes to continuous address, so we only store the
address for first child node and accesses the others by offset.
For leaf nodes, the largest rule table we test is 10K, so we need
14 bits to discriminate rules, and the bucket size is 8, so we all
need 14*8=112 bits for each leaf.

V. EXPERIMENTAL RESULTS

A. Data set
We use Access Control List (ACL), Firewall rules (FW)

and IP Chains (IPC) with 1k, 5k and 10k, generated by the
Classbench [8]. Table 2 is the number of rules for each rule

table. And the bucket size for all leaf nodes is set to 8. The data
structure of Hypersplit contains 64 bits (8 Byte).

B. Memory size and accesses
In Table 3, we present the memory size, average height of

the decision tree and the number of duplicated rules in every
decision tree. The number of trees is a trade-off between
memory size and hardware cost. If we create more layers, then
the total memory storage size would be smaller, but we need
more hardware to implement search engines. Furthermore,
according to the complexity and table size of rule table, the
more complex is the rule table, the more parallel decision trees
are needed. If we don’t create more layers, the memory size
would become much larger. For ACL1 and IPC_1k, two
decision trees are enough to reduce the memory size
significantly. But in IPC and FW, we need create more layers
to reduce the total memory. Layer 1 is created by original rule
table. When this tree is accomplished, i the duplicated rule
table will be generated where the D-rule rows in Table 3
indicate the size of duplicated rule table. By using the
duplicated rule table, we can create the decision tree of the next
layer. All trees except the last one are implemented by using
our proposed improvement heuristic. So, the last tree may need
more memories and the tree depth is higher. Table 4 shows that
in IPC1 10K rule table when only 4 layers are used. Although
layer 4 only contains 214 rules, a total of 210.15 KB is needed.
In the proposed layered cutting scheme, the duplicated rule
table behind layer 2 is very small (not great than 360), but the
rules in the duplicated rule set effect each other mutually and
cause a serious duplication problem. Besides, in FW1 5k and
10K, the memory usage in tree 3 is lager than tree 2. The
reason is that the rules moved from tree 2 to tree 3 may be
heavily overlapped and thus, the rules remained in tree 2 are
almost independent. As a result, the tree 2’s memory becomes
very small.

In Figure 4, we compare the memory consumptions for
Hicuts, Hypercuts, Hypersplit, our proposed scheme without
optimization, our proposed scheme with push-up and our
layered cutting scheme. Hicuts and Hypersplit performance are
according to the Hypersplit paper. Hicuts has the worst

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

A CL1-1K A CL1-5K A CL1-10K IPC1-1K IPC1-5K IPC1-10K FW 1-1K FW 1-5K FW 1-10K

Hicuts Hypercuts
Hypersplit P roposed scheme
P roposed scheme with push-up Multiple layered cutting scheme

Figure 4. The memory usage (KB) comparison of Hicuts, Hypercuts, Hypersplit, proposed scheme (without optimization),
proposed scheme with push-up and Multiple layered cutting scheme.

ACL1 IPC1 FW1

1K 5K 10K 1K 5K 10K 1K 5K 10K

Hypersplit (KB) 15 130 150 55 6000 20000 200 15000 66000

Multiple layered
cutting scheme

(KB)
18 109 163 23 212 488 67 312 622

Reduction 0.83 1.18 0.91 2.32 28.28 40.90 2.97 47.94 105.98

Table 5. Multiple layered cutting scheme memory
reduction over Hypersplit.

679

memory usage no matter which rule table is used due to its
inefficient equal-sized and single dimension cutting. Hypercuts
memory usage is better than Hicuts because the multiple
dimensions are used for cutting. Our proposed scheme without
optimization memory usage is larger than Hypersplit in small
table or not complex rule table. But in bigger or more complex
rule table such as IPC and FW tables of 5K and 10K rules, our
proposed scheme is more efficient in dividing address space
into subspaces. We also compare the optimizations between
Push-up heuristic and our proposed layered cutting scheme.
We could find out that our layered cutting scheme tackling rule
duplication problem is much better than Push-up scheme
significantly. Table 5 shows the comparison between our
layered cutting scheme and Hypersplit as well as the factors by
which our layered cutting scheme reduces Hypersplit’s
memory usage. In FW1 10K rule table, the reduction even gets
up to 106 times, where memory reduction of the proposed
scheme over Hypersplit is defined to be the ratio of the
memories needed by Hypersplit and the proposed scheme.

In Figure 5, we compare the average numbers of memory
accesses for Hicuts, Hypercuts, Hypersplit, our proposed
scheme without optimization, our proposed scheme with push-
up and our layered cutting scheme where the memory accesses
for the sequential search in the leaf node are excluded. Hicuts
and Hypersplit have larger numbers of memory accesses than
Hypercuts and the proposed layered cutting scheme because

they choose only single dimension to cut. Our layered cutting
scheme and Hypercuts perform equally well for small rule
tables. But, in larger rule tables, the proposed layered cutting
scheme has better performance. In Table 6, we show the details
between the one without optimization and the ones with
optimizations. We can find out that optimization scheme not
only improves the memory usage, but also the decision tree
depth. We know that if the internal node’s rule set size is great
than the bucket size, this internal node can’t convert to leaf
node. Because our layered cutting scheme is able to reduce the
duplicated rules, the rule set belonging to each internal node
has more chance to convert to leaf node. So the height of
decision tree becomes lower.

VI. CONCLUSION
We propose an efficient packet classification algorithm to

reduce memory storage size and number of memory accesses.
Many algorithms have good performance in small or not
complex rule table, but in larger or complex rule table, their
performance drops dramatically (or memory usage grows up
irrationally). Our proposed algorithm could limit the memory
growth efficiently. In other words, the performance
improvement of the proposed schemes is not effected by the
characteristics of rule tables. Our future work will be the FPGA
implementation of the proposed scheme using pipelined
architecture to increase the overall throughput.

REFERENCES

[1] F. Baboescu and G. Varghese. “Scalable Packet Classification,” Proc.

ACM SIGCOMM 2001, pp. 199–210, 2001.
[2] Yeim-Kuan Chang, "Efficient Multidimensional Packet Classification

with Fast Updates," IEEE Transactions on Computers, VOL. 58, NO. 4,
pp. 463-479, APRIL 2009 (SCI).

[3] Yeim-Kuan Chang, Y.-C. Lin, and C.-Y. Lin,"Grid of Segment Trees
for Packet Classification,"The IEEE 24th International Conference on
Advanced Information Networking and Applications (AINA-2010),
2010.

0

10

20

30

40

50

60

A CL1-1K A CL1-5K A CL1-10K IPC1-1K IPC1-5K IPC1-10K FW 1-1K FW 1-5K FW 1-10K

Hicuts Hypercuts
Hypersplit P roposed scheme
P roposed scheme with push-up Multiple layered cutting scheme

Figure 5. The memory access times comparison of Hicuts, Hypercuts, Hypersplit, proposed scheme (without optimization),
proposed scheme with push-up and Multiple layered cutting scheme excluding leaf node sequential search.

ACL1 IPC1 FW1 Tree depth
1K 5K 10K 1K 5K 10K 1K 5K 10K

proposed
scheme 6.79 7.84 11.37 8.03 10.40 11.18 8.88 11.72 12.29

proposed
scheme with

push-up
6.02 7.73 10.23 6.59 8.50 9.88 6.57 9.70 10.68

multi-layered
scheme 6.01 7.68 10.15 6.48 8.19 9.28 5.97 9.23 10.14

Table 6. The memory access times comparison of proposed
scheme (without optimization), proposed scheme with push-

up and Multiple layered cutting scheme.

680

[4] E. Cohen and C. Lund. “Packet Classification in Large ISPs: Design
and Evaluation of Decision Tree Classifiers”. Proc. SIGMETRICS 2005,
pp. 73 – 84.

[5] P. Gupta and N. McKeown, “Packet Classification Using Hierarchical
Intelligent Cuttings,” Proc. Hot Interconnects, 1999

[6] P. Gupta and N. McKeown. “Packet Classification on Multiple Fields,”
Proc. ACM SIGCOMM 1999, pp. 147–160, 199

[7] H. Lim and J. H. Mun, “High-Speed Packet Classification Using
Binary Search on Length,” Proc. of ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS),
2007.

[8] D.E. Taylor and J.S. Turner, “ClassBench: a packet classification
benchmark,” INFOCOM 2005, vol.3, pp. 2068-2079, 13-17 March 2005.

[9] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification using Multidimensional Cutting.,” Proc. ACM
SIGCOMM 2003, pp. 213-224.

[10] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvagel, “Fast and
Scalable Layer Four Switching,” Proc. ACM SIGCOMM ’98, pp. 191-
202, Aug. 1998.

[11] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. “Packet Classification
Algorithms: From Theory to Practice,” Proc. INFOCOM 2009, pp. 648–
656, 2009.

[12] B. Vamanan, G. Voskuilen and T.N. Vijaykumar. “EffiCuts:
Optimizing Packet Classification for Memory and Throughput,” Proc.
ACM SIGCOMM 2010, pp. 207-218.

[13] T. Woo. “A modular approach to packet classification: Algorithms and
results,” INFOCOM 2000, vol.3 ,pp. 1213-1222, 2000.

[14] B. Xu, D. Jiang and J. Li, “HSM: A Fast Packet Classification
Algorithm,” Proc. of the 19th International Conference on Advanced
Information Networking and Applications (AINA), 2005.

[15] B. Yang, X. Wang, Y. Xue and J. LI, “DBS: A Bit-level Heuristic
Packet Classification Algorithm for High Speed Network,” Proc. 15th
International Conference on Parallel and Distributed Systems, pp.260-
267, 2009.

[16] B. Yang, et al., “Discrete Bit Selection: Towards a Bit-level Heuristic
Framework for Multi-dimensional Packet Classification,” Proc.
INFOCOM, IEEE, 2009.

681

